Table of Contents Table of Contents
Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Методические аспекты подходов к преподаванию теории пределов функций

Гуманитарный вестник

# 5·2016 11

Methodical aspects of approaches to teaching theory

of function limits

©

F.Kh

. Akhmetova, A.V. Kosova, I.N. Pelevina

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article discusses some aspects of teaching the theory of limits in the course of math-

ematical analysis and the problems arising in presenting the educational material. To

solve the difficulties in recording the neighborhood of finite and infinite points at differ-

ent argument tendencies a table is offered that addresses all possible argument tenden-

cies, described through the neighborhoods and intervals, and the Cauchy definitions of

the function limit for all cases presented in the table are given. The table summarizing

the uncertainties and ways to address them in finding limits of functions is also given.

The techniques of calculating all possible limits are illustrated on a wide range of tasks.

Keywords:

Cauchy and Heine function limit, neighborhood of finite and infinite points,

evaluation of indeterminate forms.

REFERENCES

[1]

Ilyin V.A., Poznyak E.G.

Osnovy matematicheskogo analiza. V 2 chastyakh.

Ch. 1

[Fundamentals of mathematical analysis. In 2 parts. Part 1]. Moscow,

Fizmatlit, 2005, 648 p.

[2]

Ilyin V.A., Sadovnichiy V.A., Sendov

B.Kh.

Matematicheskiy analiz. V 2

chastyakh. Ch. 1

[Mathematical analysis. In 2 parts. Part 1]. Moscow, Yurayt

Publ., 2013, 660 p.

[3]

Morozova V.D.

Vvedenie v analiz

[Introduction to Calculus]. Moscow, BMSTU

Publ., 2014, 408 p.

[4]

Piskunov N.S.

Differentsialnoe i integralnoe ischislenie. V 2 tomakh. Tom 1

[Differential and Integral Calculus. In 2 volumes. Vol. 1]. Moscow, Integral-

Press Publ., 2010, 416 p.

[5]

Akhmetova

F.Kh

., Kosova A.V., Pelevina I.N.

Vvedenie v analiz. Teoriya

predelov. V 3 chastyakh. Ch. 1

[Introduction to Calculus. Theory of limits. In 3

parts. P. 1]. Moscow, BMSTU Publ., 2014, 33 p.

[6]

Akhmetova

F.Kh

., Efremova S.N., Laskovaya T.A.

Vvedenie v analiz. Teoriya

predelov. V 3 chastyakh. Ch. 2

[Introduction to Calculus. Theory of limits. In 3

parts. Part 2]. Moscow, BMSTU Publ., 2014, 28 p.

[7]

Akhmetova

F.Kh

., Laskovaya T.A. Pelevina I.N.

Vvedenie v analiz. Teoriya

predelov. V 3 chastyakh. Ch. 3

[Introduction to Calculus. Theory of limits. In 3

parts. Part 3]. Moscow, BMSTU Publ., 2014, 24 p.

[8]

Akhmetova

F.Kh

., Laskovaya T.A. Pelevina I.N. Nauchno-metodicheskie

problemy prepodavaniya teorii beskonechno malykh funktsiy [Scientific and

methodical problems of teaching the theory of infinitesimal functions].

Tezisy

Mezhdunarodnoy nauchnoy konferentsii “Fiziko-natematicheskie problemy

sozdaniya novoy tekhniki”

[Abstracts of the International Scientific Conference

"Physical and mathematical problems of new technology creation", November

17–19, 2014]. Moscow, BMSTU Publ., 2014, p. 104–105.

[9]

Akhmetova

F.Kh

., Laskovaya T.A. Pelevina I.N.

Inzhenernyy vestnik —

Engineering Bulletin

, 2015, no. 4. Available at:

http://engbul.bmstu.ru/doc/773087.html