Гуманитарный вестник
# 5·2016 1
УДК 517 DOI 10.18698/2306-8477-2016-05-360
Методические аспекты подходов к преподаванию
теории пределов функций
© Ф.Х. Ахметова, А.В. Косова, И.Н. Пелевина
МГТУ им. Н.Э. Баумана, Москва, 105005, Россия
Рассмотрены вопросы преподавания теории пределов в курсе математического
анализа и проблемы, возникающие при изложении учебного материала. Для реше-
ния трудностей при записи окрестностей конечной и бесконечной точек при раз-
личном стремлении аргумента предложена таблица, в которой рассмотрены все
возможные варианты стремления аргумента, расписанные через окрестности и
интервалы, и даны определения предела функции по Коши для всех рассмотренных
в таблице случаев. Неопределенности и способы их устранения при нахождении
пределов функции также сведены в таблицу. Проиллюстрирована методика вы-
числения всевозможных пределов на широком спектре задач.
Ключевые слова:
предел функции по Коши и по Гейне, окрестность конечной и
бесконечной точек, раскрытие неопределенностей.
Введение.
В инженерном образовании построение математиче-
ских моделей физических и механических процессов играет важней-
шую роль, поскольку будущий специалист должен уметь проводить
анализ инженерных задач за счет использования математических ме-
тодов и давать качественную оценку полученного результата. Для
этого на первых этапах обучения используют аппарат математиче-
ского анализа и изучают его основные понятия.
Для начала отметим, что предел функции — это одно из ключе-
вых понятий математического анализа, оно вводится на первых лек-
циях и затем постоянно используется в дальнейшем. С помощью
определения предела функции по Коши доказывается целый ряд
важнейших теорем, как это видно из работ [1–4]. Поэтому студентам
необходимо научиться расписывать пределы при различных стрем-
лениях аргумента, уметь оперировать ими и находить значения пре-
делов функции, даже если возникают неопределенности при вычис-
лениях.
Теория пределов функций. Трактовка предела функции по
Коши.
Прежде чем дать определение предела функции по Коши,
предлагается ввести понятия окрестностей конечной и бесконечной
точек при различном стремлении аргумента. Для удобства восприя-
тия сведем все эти понятия в табл. 1.