|

Review of software and methods for recovering missing values in sociological data sets

Authors: Fomina E.E. Published: 12.08.2019
Published in issue: #4(78)/2019  
DOI: 10.18698/2306-8477-2019-4-611  
Category: The Humanities in Technical University | Chapter: Social sciences  
Keywords: imputations of data, missing data restoration, incomplete observations

Analysis of sociological data involves the study of large arrays of variables that may contain missing values. The presence of a significant number of incomplete records leads to distortion of the statistical analysis results, misinterpretation of modeling results. The article surveys software and mathematical methods designed to fill in the gaps in the data sets during sociological research. The mathematical nature, advantages and disadvantages of the most common methods of restoration of omissions used in solving practical problems are considered. An overview of modern software used to solve such problems is presented. A method for selecting the most efficient imputation algorithm was proposed.


References
[1] Little R.J.A., Rubin D.B. Statistical analysis with missing data. New York, Wiley J. and Sons Publ., 1987, 278 p. [In Russ.: Little R.J.A., Rubin D.B. Statisticheskiy analis dannykh s propuskami. Moscow, Finansy i statistika Publ., 1990, 336 p.].
[2] Zloba E., Yatskie I. Computer Modeling & New Technologies, 2002, vol. 6, no. 1, pp. 51–61.
[3] Zangieva I.K. Sotsiologiya: metodologiya, metody, matematicheskoe modelirovanie — Sociology: methodology, methods, mathematical modeling, 2011, no. 33, pp. 28–56.
[4] Fabrikan M.S. Sotsiologiya: metodologiya, metody, matematicheskoe modelirovanie — Sociology: methodology, methods, mathematical modeling, 2015, no. 41, pp. 7–29.
[5] Abramenkova I.V., Kruglov V.V. Programmnye produkty i sistemy — Software and systems, 2005, no. 2, p. 4.
[6] Silva-Ramírez E.-L. et al. Neural Networks, 2011, vol. 24, no. 1, pp. 121–129.
[7] Orlova I.V., ed. Mnogomernyy statisticheskiy analiz v ekonomicheskikh zadachakh: komputernoe modelirovanie v SPSS [Multivariate statistical analysis in economic problems: computer modeling in SPSS]. Moscow, Vuzovskiy uchebnik Publ., 2009, 309 p.
[8] Pimonov A.G., Glebova E.A., Sarapulova T.V., Glebov V.V. Ekonomika i upravlenie innovatsiyami — Economics and innovation management, 2017, no. 3, pp. 52–66.
[9] Zagoruyko N.G., Elkina V.N., Timerkaev V.S. Algoritm zapolneniya propuskov v empiricheskikh tablitsakh (algoritm ZET) [Algorithm for filling gaps in empirical tables (algorithm ZET)]. In: Empiricheskoe predskazanie i raspoznavanie obrazov. Sbornik trudov [Empirical prediction and pattern recognition. Collected works], Novosibirsk, 1975, no. 61: Vychislitelnye sistemy [Computer systems], pp. 3–27.
[10] Snituk V.E. Evolutsionnyy metod vosstanovleniya propuskov dannykh [Evolutionary method of restoration of omissions in data]. Sbornik trudov VI Mezhdunarodnoy konferentsii “Intellektualnyy analiz informatsii, Kiev, Nationalnyy tekhnicheskiy universitet Ukrainy “Kievskiy politekhnicheskiy institute”, 16–19 maya 2006 g. [Proceedings of the VI-th International Conference «Intellectual analysis of information», Kyiv, National technical University of Ukraine “Kyiv Polytechnic Institute”, May 16–19, 2006]. Kiev, 2006, pp. 262–271.
[11] Silva-Ramírez E.-L., Pino-Mejías R., Lopez-Coello M. Applied Soft Computing, 2015, no. 29, pр. 128–132.
[12] Yoon S., Lee S. Neural Processing Letters, 1999, no. 10 (3), pp. 171–179.
[13] Büyül A., Zefeldt P. SPSS: iskusstvo obrabotki informatsii. Analiz ststisticheskikh dannykh i vosstanovlenie skrytykh zakonomernostey [SPSS: the art of information processing. The analysis of statistical data and restoring hidden patterns]. St. Petersburg, DiaSoftYup Publ., 2005, 608 p. [In Russ.]
[14] Taganov D.N. Statisticheskiy analiz v marketingovykh issledovaniyakh [Statistical analysis in marketing research]. St. Petersburg, Peter Publ., 2005, 192 p.
[15] Nasledov A.D. SPSS — komputernyy analiz dannykh v psikhologii i sotsialnykh naukakh [SPSS — Computer analysis of data in psychology and social sciences]. St. Petersburg, Peter Publ., 2005, 416 p.
[16] Kryshtanovsky A. O. Analiz sotsiologicheskikh dannykh s pomoshchyu paketa SPSS [Analysis of sociological data using SPSS package]. Moscow, GU VShE Publ., 2006, 281 p.
[17] Organizatsiya massovykh dannykh i algoritmy vyyavleniya vybrosov [Organization of mass data and algorithms for detecting outliers]. Available at: https://studme.org/120986/matematika_himiya_fizik/organizatsiya_massovyh_dannyh_algoritmy_vyyavleniya_vybrosov#aftercont (accessed May 6, 2019).