On formal definition of virtual ontology
Authors: Pavlov-Pinus K.A. | Published: 19.06.2019 |
Published in issue: #3(77)/2019 | |
DOI: 10.18698/2306-8477-2019-3-605 | |
Category: The Humanities in Technical University | Chapter: Philosophy Science | |
Keywords: virtual ontology, actualized world, deterministic law, probabilistic principle |
The paper dwells on the meaning of the concept of virtual ontology, which is actually an extension of the concept of an algebraic system. There are two ways to generalize the concept of an algebraic system. The first one is to add probabilistic principles governing the spectrum of admissible states of a virtual system into the signature, and the second one is to shift from the reductionist approach towards holistic principles of its structure. Further, the temporal parameterization of such ontologies allows introducing the concept of an actualized world, i.e. ontologies with a mobile “present” time dividing it into history and a probable future. If by “deterministic laws” of this actualized world we mean computable functions from its signature, then we will get a class of ontologies combining probabilistic and deterministic forms of order, which allow us to model the formation and functioning of any rational processes
References
[1] Pavlov-Pinus K.A. Filosofskie problemy IT i kiberprostranstva — Philosophical problems of IT and Cyberspace, 2018, no. 2 (15). Available at: http://cyberspace.pglu.ru/issues/detail.php?ELEMENT_ID=264205 (accessed December 7, 2018). DOI: 10.17726/philIT.2018.2.15.4
[2] Pavlov-Pinus K.A. Gumanitarny Vestnik — Humanities Bulletin of BMSTU, 2019, no. 1 (75). DOI: 10.18698/2306-8477-2019-1-588
[3] Pinus A.G. Osnovy universalnoy algebry [Foundations of universal algebra]. Novosibirsk, NSTU Puvl., 2019. ISBN/ISSN: 978-5-7782-3794-0
[4] Burris S., Sankappanavar H.P. A course in universal algebra. Springer-Verlag, New York, Heidelberg, Berlin, 1981, 331 p.
[5] Saunders M. Categories for the Working Mathematician. Graduate Texts in Mathematics. 5 (2nd ed.). Springer-Verlag. 1998. ISBN 978-0-387-98403-2 [In Russ.: Saunders M. Kategorii dlya rabotayushchego matematika. Moscow, Fizmatlit Publ., 2004, 1998].
[6] Gribbin J. In search of Schröedinger’s cat. Transworld Digital, 2012, 318 p. [In Russ.: Gribbin J. V poiskah kota Shredingera. Transl. from Eng. Z.A. Mamedyarov, Е.A. Fomenko. Moscow, RIPOL klassik Publ., 2018, 352 p.].
[7] Kant I. Kritik der reinen Vernunft. Felix Meinerverlag, Hamburg, 100 p. [In Russ.: Kritika chistogo razuma. Works: In 6 vols., vol. 3. Moscow, 1963–1966].